Collaborative spectrum sensing among secondary users (SUs) in cognitive
networks is shown to yield a significant performance improvement. However,
there exists an inherent trade off between the gains in terms of probability of
detection of the primary user (PU) and the costs in terms of false alarm
probability. In this paper, we study the impact of this trade off on the
topology and the dynamics of a network of SUs seeking to reduce the
interference on the PU through collaborative sensing. Moreover, while existing
literature mainly focused on centralized solutions for collaborative sensing,
we propose distributed collaboration strategies through game theory. We model
the problem as a non-transferable coalitional game, and propose a distributed
algorithm for coalition formation through simple merge and split rules. Through
the proposed algorithm, SUs can autonomously collaborate and self-organize into
disjoint independent coalitions, while maximizing their detection probability
taking into account the cooperation costs (in terms of false alarm). We study
the stability of the resulting network structure, and show that a maximum
number of SUs per formed coalition exists for the proposed utility model.
Simulation results show that the proposed algorithm allows a reduction of up to
86.6% of the average missing probability per SU (probability of missing the
detection of the PU) relative to the non-cooperative case, while maintaining a
certain false alarm level. In addition, through simulations, we compare the
performance of the proposed distributed solution with respect to an optimal
centralized solution that minimizes the average missing probability per SU.
Finally, the results also show how the proposed algorithm autonomously adapts
the network topology to environmental changes such as mobility.Comment: in proceedings of IEEE INFOCOM 200