thesis

Characterization of DP600 Steel Subject to Electrohydraulic Forming

Abstract

Electrohydraulic forming (EHF) is a manufacturing technique that transforms electrical energy into work. In EHF, a shockwave is produced as a result of a high-voltage electrical discharge between two electrodes in a water chamber, which travels through water toward the sheet and forms it into the final shape at high velocity. Strain rates can reach 104 s-1 in EHF. DP600 dual phase steel was formed in the Nakazima test in quasi-static (QS) condition, and EHF, performed without a mating die (free forming) and using a 34° conical die (die forming). The sheets were etched with a grid prior to testing to determine strains across each specimen. Analysis of voids was carried out to investigate the micro-mechanisms of failure in DP600 steel formed in these three processes. Nakazima specimens exhibited uniform strain behaviour up to 0.65 effective strain; EHFF up to 0.45 effective strain; and EHDF up to 0.7 effective strain

    Similar works