research

Majorana-Oppenheimer approach to Maxwell electrodynamics in Riemannian space-time

Abstract

The Riemann -- Silberstein -- Majorana -- Oppengeimer approach to the Maxwell electrodynamics in presence of electrical sources and arbitrary media is investigated within the matrix formalism. The symmetry of the matrix Maxwell equation under transformations of the complex rotation group SO(3.C) is demonstrated explicitly. In vacuum case, the matrix form includes four real 4×44 \times 4 matrices αb\alpha^{b}. In presence of media matrix form requires two sets of 4×44 \times 4 matrices, αb\alpha^{b} and βb\beta^{b} -- simple and symmetrical realization of which is given. Relation of αb\alpha^{b} and βb\beta^{b} to the Dirac matrices in spinor basis is found. Minkowski constitutive relations in case of any linear media are given in a short algebraic form based on the use of complex 3-vector fields and complex orthogonal rotations from SO(3.C) group. The matrix complex formulation in the Esposito's form, based on the use of two electromagnetic 4-vector, is studied and discussed. Extension of the 3-vector complex matrix formalism to arbitrary Riemannian space-time in accordance with tetrad method by Tetrode-Weyl-Fock-Ivanenko is performed.Comment: 32pages. Proccedings of the 14th Conference-School "Foundation & Advances in Nonlinear Science", Minsk, September 22-25, 2008. P. 20-49; ed. V.I. Kuvshinov, G.G. Krylov, Minsk, 200

    Similar works