slides

Effects of resolution and helium abundance in A star surface convection simulations

Abstract

We present results from 2D radiation-hydrodynamical simulations of fully compressible convection for the surface layers of A-type stars with the ANTARES code. Spectroscopic indicators for photospheric convective velocity fields show a maximum of velocities near Teff ~8000 K. In that range the largest values are measured for the subgroup of Am stars. Thus far, no prognostic model, neither theoretical nor numerical, is able to exactly reproduce the line profiles of sharp line A and Am stars in that temperature range. In general, the helium abundance of A stars is not known from observations. Hence, we have considered two extreme cases for our simulations: a solar helium abundance as an upper limit and zero helium abundance as a lower limit. The simulation for the helium free case is found to differ from the case with solar helium abundance by larger velocities, larger flow structures, and by a sign reversal of the flux of kinetic energy inside the hydrogen ionisation zone. Both simulations show extended shock fronts emerging from the optical surface, as well as mixing far below the region of partial ionisation of hydrogen, and vertical oscillations emerging after initial perturbations have been damped. We discuss problems related to the rapid radiative cooling at the surface of A-type stars such as resolution and efficient relaxation. The present work is considered as a step towards a systematic study of convection in A- to F-type stars, encouraged by the new data becoming available for these objects from both asteroseismological missions and from high resolution spectroscopy.Comment: submitted to CoAst, preprint version with 26 pages (29 pages in CoAst layout), 8 figures, 1 tabl

    Similar works

    Full text

    thumbnail-image