Abstract

In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last\ud 20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on\ud the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon\ud wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and\ud highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record\ud reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST\ud difference of 2C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet\ud undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A\ud second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the\ud stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929\ud record occurred between 13 and 10 ka B.P. Interglacial SST is 24C, indicating influence of upwelling. The\ud onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid\ud temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are\ud most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water\ud advection

    Similar works