Abstract

The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field lines is analyzed on the basis of a numerical simulation model and theoretical investigations. In the parameter range of strongly anisotropic magnetic turbulence the KS entropy is shown to deviate considerably from the earlier predicted scaling relations [Rev. Mod. Phys. {\bf 64}, 961 (1992)]. In particular, a slowing down logarithmic behavior versus the so-called Kubo number R1R\gg 1 (R=(δB/B0)(ξ/ξ)R = (\delta B / B_0) (\xi_\| / \xi_\bot), where δB/B0\delta B / B_0 is the ratio of the rms magnetic fluctuation field to the magnetic field strength, and ξ\xi_\bot and ξ\xi_\| are the correlation lengths in respective dimensions) is found instead of a power-law dependence. These discrepancies are explained from general principles of Hamiltonian dynamics. We discuss the implication of Hamiltonian properties in governing the paradigmatic "percolation" transport, characterized by RR\to\infty, associating it with the concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov exponents). Applications of this study pertain to both fusion and astrophysical plasma and by mathematical analogy to problems outside the plasma physics. This research article is dedicated to the memory of Professor George M. ZaslavskyComment: 15 pages, 2 figures. Accepted for publication on Plasma Physics and Controlled Fusio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 28/02/2019