A nonparametric procedure for robust regression estimation and for quantile
regression is proposed which is completely data-driven and adapts locally to
the regularity of the regression function. This is achieved by considering in
each point M-estimators over different local neighbourhoods and by a local
model selection procedure based on sequential testing. Non-asymptotic risk
bounds are obtained, which yield rate-optimality for large sample asymptotics
under weak conditions. Simulations for different univariate median regression
models show good finite sample properties, also in comparison to traditional
methods. The approach is extended to image denoising and applied to CT scans in
cancer research