Abstract

Phase fitting has been extensively used during the last years to improve the behaviour of numerical integrators on oscillatory problems. In this work, the benefits of the phase fitting technique are embedded in discrete Lagrangian integrators. The results show improved accuracy and total energy behaviour in Hamiltonian systems. Numerical tests on the long term integration (100000 periods) of the 2-body problem with eccentricity even up to 0.95 show the efficiency of the proposed approach. Finally, based on a geometrical evaluation of the frequency of the problem, a new technique for adaptive error control is presented

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019