Using density functional theory we show that an applied electric field
substantially improves the hydrogen storage properties of a BN sheet by
polarizing the hydrogen molecules as well as the substrate. The adsorption
energy of a single H2 molecule in the presence of an electric field of 0.05
a.u. is 0.48 eV compared to 0.07 eV in its absence. When one layer of H2
molecules is adsorbed, the binding energy per H2 molecule increases from 0.03
eV in the field-free case to 0.14 eV/H2 in the presence of an electric field of
0.045 a.u. The corresponding gravimetric density of 7.5 wt % is consistent with
the 6 wt % system target set by DOE for 2010. Once the applied electric field
is removed, the stored H2 molecules can be easily released, thus making the
storage reversible.Comment: submitted to Phys. Rev. Lett. 15 pages with 6 figure