PrBaCo 2 O 6−δ -Ce 0.8 Sm 0.2 O 1.9 composite cathodes for intermediate-temperature solid oxide fuel cells: Stability and cation interdiffusion

Abstract

The single-phase oxide PrBaCo 2 O 6−δ and composites (100 − y)PrBaCo 2 O 6−δ -yCe 0.8 Sm 0.2 O 1.9 (y = 10–30 wt.%) were investigated as cathode materials for intermediate-temperature solid oxide fuel cells. The chemical compatibility, cation interdiffusion, thermal expansion and dc conductivity were studied. As a result, strong interdiffusion of Pr and Sm was found between PrBaCo 2 O 6−δ and Ce 0.8 Sm 0.2 O 1.9 . This leads to only insignificantly decreasing thermal expansion coefficient of composite with increasing fraction of Ce 0.8 Sm 0.2 O 1.9 and, thus, mixing PrBaCo 2 O 6−δ with Ce 0.8 Sm 0.2 O 1.9 does not improve thermal expansion behavior of the cathode material. Moreover, formation of poorly-conducting BaCeO 3 , caused by chemical interaction between the double perovskite and doped ceria, was shown to lead to pronounced drop in the electrical conductivity of the composite cathode material with increasing Ce 0.8 Sm 0.2 O 1.9 content. © 2019 by the authors

    Similar works