slides

Mapping Approach for Quantum-Classical Time Correlation Functions

Abstract

The calculation of quantum canonical time correlation functions is considered in this paper. Transport properties, such as diffusion and reaction rate coefficients, can be determined from time integrals of these correlation functions. Approximate, quantum-classical expressions for correlation functions, which are amenable to simulation, are derived. These expressions incorporate the full quantum equilibrium structure of the system but approximate the dynamics by quantum-classical evolution where a quantum subsystem is coupled to a classical environment. The main feature of the formulation is the use of a mapping basis where the subsystem quantum states are represented by fictitious harmonic oscillator states. This leads to a full phase space representation of the dynamics that can be simulated without appeal to surface-hopping methods. The results in this paper form the basis for new simulation algorithms for the computation of quantum transport properties of large many-body systems

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019