A modern thermo-kinetic warm fog dispersal system /

Abstract

An extensive investigation has been made to arrive at optimum specifications for a thermo-kinetic warm fog dispersal system. This study included passive heat tests, sub-scale heat/momentum tests, and tests with a single full-scale runway combustor and an approach zone combustor. These tests were augmented with extensive analytical modeling of buoyant jets under coflowing and counterflowing wind conditions. The landing category and the operational requirements within each category are the primary factors affecting the size of the thermal fog dispersal system (TFDS). A Cat 2 TFDS employs 22 percent fewer combustors and uses 50 percent less fuel than a Cat 1 TFDS. The combustor specification and orientation are presented for both Cat 1 and Cat 2 systems. (Author).Research supported by the Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force, Hanscom AFB, Massachusetts.Meteorology Division Project 2093."14 November 1978."Includes bibliographical references (pages 27-28).An extensive investigation has been made to arrive at optimum specifications for a thermo-kinetic warm fog dispersal system. This study included passive heat tests, sub-scale heat/momentum tests, and tests with a single full-scale runway combustor and an approach zone combustor. These tests were augmented with extensive analytical modeling of buoyant jets under coflowing and counterflowing wind conditions. The landing category and the operational requirements within each category are the primary factors affecting the size of the thermal fog dispersal system (TFDS). A Cat 2 TFDS employs 22 percent fewer combustors and uses 50 percent less fuel than a Cat 1 TFDS. The combustor specification and orientation are presented for both Cat 1 and Cat 2 systems. (Author).Mode of access: Internet

    Similar works