Characterization of Ba\u3csub\u3e1-x-y\u3c/sub\u3eCa\u3csub\u3ex\u3c/sub\u3eSr\u3csub\u3ey\u3c/sub\u3eTiO\u3csub\u3e3\u3c/sub\u3e Perovskites as Pb-Free Dielectric Materials
Use of lead-containing piezoelectric components in electrical and electronic devices has been banned on the EU market since July 1st, 2006. Development of lead-free high performance piezoelectric materials to meet the strong market demand is therefore imperative. In this paper, we report a systematic study on the structural, dielectric and ferroelectric properties of one class of lead-free piezoelectric materials, Ba1-x-yCaxSryTiO3 (x = 0-0.4, and y = 0-0.2) ceramics, using techniques such as XRD, SEM, impedance analyzer, and ferroelectric analyzer. It is found that with increasing Sr concentration in Ba1-ySryTiO3 and Ba0.8-ySryCa0.2TiO3, the crystal structure transforms from tetragonal to cubic along with a decreased unit-cell volume. The microstructures of all samples prepared are uniform and dense with the grain size decreasing with Sr content. The Curie temperature decreases faster with Sr and Ca co-doped BaTiO3 than that of Sr or Ca singularly-doped one. Above Curie temperature, a tunability of 31.4% can be achieved at an applied voltage of 30 kV/cm for (Ba0.6Ca0.2Sr0.2TiO3). These properties promise Ba1-x-yCaxSryTiO3 system to be applicable in Pb-free tunable devices