In this note we compute the flavor-dependent chiral-logarithmic corrections
to the decay Z to b bbar in the three site Higgsless model. We compute these
corrections diagrammatically in the "gaugeless" limit in which the electroweak
couplings vanish. We also compute the chiral-logarithmic corrections to the
decay Z to b bbar using an RGE analysis in effective field theory, and show
that the results agree. In the process of this computation, we compute the form
of the chiral current in the gaugeless limit of the three-site model, and
consider the generalization to the N-site case. We elucidate the Ward-Takahashi
identities which underlie the gaugeless limit calculation in the three-site
model, and describe how the result for the Z to b bbar amplitude is obtained in
unitary gauge in the full theory. We find that the phenomenological constraints
on the three-site Higgsless model arising from measurements of Z to b bbar are
relatively mild, requiring only that the heavy Dirac fermion be heavier than 1
TeV or so, and are satisfied automatically in the range of parameters allowed
by other precision electroweak data.Comment: 19 pages, 7 embedded eps figures (additional reference added