slides

Comparative concept similarity over Minspaces: Axiomatisation and Tableaux Calculus

Abstract

We study the logic of comparative concept similarity \CSL introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev to capture a form of qualitative similarity comparison. In this logic we can formulate assertions of the form " objects A are more similar to B than to C". The semantics of this logic is defined by structures equipped by distance functions evaluating the similarity degree of objects. We consider here the particular case of the semantics induced by \emph{minspaces}, the latter being distance spaces where the minimum of a set of distances always exists. It turns out that the semantics over arbitrary minspaces can be equivalently specified in terms of preferential structures, typical of conditional logics. We first give a direct axiomatisation of this logic over Minspaces. We next define a decision procedure in the form of a tableaux calculus. Both the calculus and the axiomatisation take advantage of the reformulation of the semantics in terms of preferential structures.Comment: 25 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019
    Last time updated on 11/11/2016