Spontán, nagyszótáras, folyamatos beszéd gépi felismerési pontosságának növelése beszélőadaptációval a MALACH projektben

Abstract

Cikkünkben bemutatjuk, hogy az MLLR (Maximum Likelihood Linear Regression) alapú beszélőadaptálás során a beszédfelismerési hatékonyság az adott spontán magyar nyelvű adatbázison jelentősen növekszik. Többféle módszert kipróbáltunk mind a felügyelt mind a felügyeletlen adaptálódás esetén is. A globális megoldás mellett regressziós osztályokon alapuló transzformációt is alkalmaztunk; felügyeletlen modellillesztés esetén a többszörös adaptálást is megvizsgáltuk. Továbbá folyamatos, nagyszótáras és spontán automatikus beszédfelismerővel kapott eredményekkel támasztjuk alá, hogy ha a szó alapú nyelvi modell helyett a magyar nyelvet pontosabban leíró morféma alapú modellezést alkalmazzuk, akkor a beszélőadaptálás által okozott javulás még szignifikánsabban jelentkezhet a felismerési hibaarányban

    Similar works