Use of Service Oriented Architecture for Scada Networks

Abstract

Supervisory Control and Data Acquisition (SCADA) systems involve the use of distributed processing to operate geographically dispersed endpoint hardware components. They manage the control networks used to monitor and direct large-scale operations such as utilities and transit systems that are essential to national infrastructure. SCADA industrial control networks (ICNs) have long operated in obscurity and been kept isolated largely through strong physical security. Today, Internet technologies are increasingly being utilized to access control networks, giving rise to a growing concern that they are becoming more vulnerable to attack. Like SCADA, distributed processing is also central to cloud computing or, more formally, the Service Oriented Architecture (SOA) computing model. Certain distinctive properties differentiate ICNs from the enterprise networks that cloud computing developments have focused on. The objective of this project is to determine if modern cloud computing technologies can be also applied to improving dated SCADA distributed processing systems. Extensive research was performed regarding control network requirements as compared to those of general enterprise networks. Research was also conducted into the benefits, implementation, and performance of SOA to determine its merits for application to control networks. The conclusion developed is that some aspects of cloud computing might be usefully applied to SCADA systems but that SOA fails to meet ICN requirements in a certain essential areas. The lack of current standards for SOA security presents an unacceptable risk to SCADA systems that manage dangerous equipment or essential services. SOA network performance is also not sufficiently deterministic to suit many real-time hardware control applications. Finally, SOA environments cannot as yet address the regulatory compliance assurance requirements of critical infrastructure SCADA systems

    Similar works