We show that real model sets with real internal spaces are determined, up to
translation and changes of density zero by their two- and three-point
correlations. We also show that there exist pairs of real (even one
dimensional) aperiodic model sets with internal spaces that are products of
real spaces and finite cyclic groups whose two- and three-point correlations
are identical but which are not related by either translation or inversion of
their windows. All these examples are pure point diffractive.
Placed in the context of ergodic uniformly discrete point processes, the
result is that real point processes of model sets based on real internal
windows are determined by their second and third moments.Comment: 19 page