Combinatorial Properties of Polyiamonds

Abstract

Polyiamonds are plane geometric figures constructed by pasting together equilateral triangles edge-to-edge. It is shown that a diophantine equation involving vertices of degrees 2, 3, 5 and 6 holds for all polyiamonds; then an Eberhard-type theorem is proved, showing that any four-tuple of non-negative integers that satisfies the diophantine equation can be realized geometrically by a polyiamond. Further combinatorial and graph-theoretic aspects of polyiamonds are discussed, including a characterization of those polyiamonds that are three-connected and so three-polytopal, a result on Hamiltonicity, and constructions that use minimal numbers of triangles in realizing four-vectors

    Similar works

    Full text

    thumbnail-image