The paper is devoted to the efficient computation of high-order cubature
formulas for volume potentials obtained within the framework of approximate
approximations. We combine this approach with modern methods of structured
tensor product approximations. Instead of performing high-dimensional discrete
convolutions the cubature of the potentials can be reduced to a certain number
of one-dimensional convolutions leading to a considerable reduction of
computing resources. We propose one-dimensional integral representions of
high-order cubature formulas for n-dimensional harmonic and Yukawa potentials,
which allow low rank tensor product approximations.Comment: 20 page