Ticks have a unique life history including a distinct set of life stages and a single blood meal per life stage. This makes tick-host interactions more complex from a mathematical perspective. In addition, any model of these interactions must involve a significant degree of stochasticity on the individual tick level. In an attempt to quantify these relationships, I have developed an individual-based model of the interactions between ticks and their hosts as well as the transmission of tick-borne disease between the two populations. The results from this model are compared with those from previously published differential equation based population models. The findings show that the agent-based model produces significantly lower prevalence of disease in both the ticks and their hosts than what is predicted by a similar differential equation model