Estimating Hydroxyl Radical Photochemical Formation Rates in Natural Waters During Long-Term Laboratory Irradiation Experiments

Abstract

In this study it was observed that, during long-term irradiations (\u3e1 day) of natural waters, the methods for measuring hydroxyl radical (˙OH) formation rates based upon sequentially determined cumulative concentrations of photoproducts from probes significantly underestimate actual ˙OH formation rates. Performing a correction using the photodegradation rates of the probe products improves the ˙OH estimation for short term irradiations (\u3c1 day), but not long term irradiations. Only the ‘instantaneous’ formation rates, which were obtained by adding probes to aliquots at each time point and irradiating these sub-samples for a short time (≤2 h), were found appropriate for accurately estimating ˙OH photochemical formation rates during long-term laboratory irradiation experiments. Our results also showed that in iron- and dissolved organic matter (DOM)-rich water samples, ˙OH appears to be mainly produced from the Fenton reaction initially, but subsequently from other sources possibly from DOM photoreactions. Pathways of ˙OH formation in long-term irradiations in relation to H2O2 and iron concentrations are discussed

    Similar works