Varying Feedback Strategy and Scheduling in Simulator Training: Effects on Learner Perceptions, Initial Learning, and Transfer

Abstract

This experimental study investigated the effects of visual feedback on initial learning, perceived self-efficacy, workload, near transfer, far transfer, and perceived realism during a simulator-based training task. Prior studies indicate that providing feedback is critical for schema development (Salmoni, Schmidt, & Walter 1984; Sterman, 1994). However, its influence has been shown to dissipate and is not directly proportionate to the frequency at which it is given (Wulf, Shea, & Matschiner, 1998). A total of 54 participants completed the study forming six treatment groups. The independent treatment, visual feedback, was manipulated as scheduling (absolute—every practice trial or relative—every third trial) and strategies (gradual decrease of visual cues within the interface, gradual increase of visual cues within the interface, or a single consistent cue for each trial). Participants completed twelve practice trials of welding under one of six feedback manipulations; then, participants completed twelve practice trials of welding without it. Lastly, participants performed the weld task on actual equipment in a shop area. No treatment showed significant difference among groups with regard to initial learning, retention, near transfer, and far transfer measures. However, a statistical significance was found during initial learning and retention within each treatment group. Findings support empirical evidence that a variability of practice paradigm promotes learning (Lee & Carnahan, 1990; Shea & Morgan, 1979). Learner perceptions of realism suggest that novice learners perceive simulator fidelity as high, however, these perceptions may dissipate as the learner practices. Those groups that involved the greatest number of cues at the onset of practice or having cues available at every other trial reported the greatest amount of workload. All groups reported increases in perceptions of self-efficacy during practice on the simulator, but those perceptions decreased when participants performed the weld task on actual equipment. Findings suggest that contextual-interference of increasing, decreasing, or changing feedback counteracts the guidance effect of feedback as found in previous studies

    Similar works