Plasma Emission Redistribution in a Single Cylce of a Pulsed DC Magnetron

Abstract

Time-resolved images of the optical emissions from a pulsed dc titanium target planar rectangular sputtering magnetron plasma were taken using Argon spectral filters and a Roper Scientific ICCD camera with a time resolution of 0.05-0.2 μs. At the beginning of the \u27on-time\u27, when the power is turned on, the discharge initially starts preferentially in two opposite curved sections (\u27cross corners\u27) of the magnetron race track, where it exhibits the most intense plasma emissions. During the rest of the \u27on-time\u27, the emissions from the straight sections of the race track of the magnetron are always slightly more intense than the emissions from the curved sections of the race track. This pattern extends into the start of the \u27off-time\u27, when the power is turned off. In an effort to explain this \u27plasma emission redistribution (PER)\u27 effect, we used a Monte Carlo (MC) approach to simulate the optical emissions from our pulsed dc magnetron plasma. The simulation reproduces the PER effect, which can be linked to the specific electric (E) and magnetic (B) field spatial distributions and electric field distribution temporal variations in conjunction with the electron E x B drift

    Similar works