research

Improved Cross-Entropy Method for Estimation

Abstract

The cross-entropy (CE) method is an adaptive importance sampling procedure that has been successfully applied to a diverse range of complicated simulation problems. However, recent research has shown that in some high-dimensional settings, the likelihood ratio degeneracy problem becomes severe and the importance sampling estimator obtained from the CE algorithm becomes unreliable. We consider a variation of the CE method whose performance does not deteriorate as the dimension of the problem increases. We then illustrate the algorithm via a high-dimensional estimation problem in risk management

    Similar works