A basic assumption of molecular biology is that proteins sharing close
three-dimensional (3D) structures are likely to share a common function and in
most cases derive from a same ancestor. Computing the similarity between two
protein structures is therefore a crucial task and has been extensively
investigated. Evaluating the similarity of two proteins can be done by finding
an optimal one-to-one matching between their components, which is equivalent to
identifying a maximum weighted clique in a specific "alignment graph". In this
paper we present a new integer programming formulation for solving such clique
problems. The model has been implemented using the ILOG CPLEX Callable Library.
In addition, we designed a dedicated branch and bound algorithm for solving the
maximum cardinality clique problem. Both approaches have been integrated in
VAST (Vector Alignment Search Tool) - a software for aligning protein 3D
structures largely used in NCBI (National Center for Biotechnology
Information). The original VAST clique solver uses the well known Bron and
Kerbosh algorithm (BK). Our computational results on real life protein
alignment instances show that our branch and bound algorithm is up to 116 times
faster than BK for the largest proteins