We show that, if graphene is subjected to the potential from an external
superlattice, a band gap develops at the Dirac point provided the superlattice
potential has broken inversion symmetry. As a numerical example, we calculate
the band structure of graphene in the presence of an external potential due to
periodically patterned gates arranged in a triangular graphene superlattice
(TGS) with broken inversion symmetry, and find that a band gap is created at
both the original and "second generation" Dirac point. The gap can be
controlled, in principle, by changing the external potential and the lattice
constant of the TGS.Comment: 6 figures, Phys. Rev. B 79, 20543