Development of Open Source Software and Hardware Tool-Chains for Novel Electronics

Abstract

3-D printing technologies have become widely adopted and have spurred innovation and efficiency across many markets. A large contributor to the success of 3-D printing are open source, low cost electronics. On-site circuit manufacturing, however, has not become as widely utilized as 3-D printing. This project attempts to address this problem by proposing and demonstrating an open source circuit board milling machine which is inexpensive, easily manufactured, and accurate. In three interdependent sub-projects, this thesis defines a standard method for designing open source hardware, the design of the bespoke circuit mill, and explores an application of the mill for novel circuit manufacturing. The first sub-project develops a standardized process for designing, prototyping, and distributing open source hardware. Following these steps can help ensure success for each individual part of the project. In order to validate the procedure, a case study is explored of designing low cost parametric glass slide driers. The second sub-project details the design and construction of a circuit prototyping machine. The open source design procedure is implemented to assure maximum effectiveness. A software interface is also designed to control and carry out processing steps on the milling machine. The mill minimizes lead time and production costs of experimental circuitry. The mill also stands as a strong open source tool that can help foster growth in distributed manufacturing of electronics for a wide array of applications. The third and final sub-project explores a flexible and scalable power monitoring system. The electronics are designed according to the open source design procedure and are manufacturable with the circuit milling machine. The power meter can be used to monitor and log power consumption of a wide range of loads, including both AC and DC

    Similar works