research

The genus spectrum of a hyperbolic 3-manifold

Abstract

In this article we study the spectrum of totally geodesic surfaces of a finite volume hyperbolic 3-manifold. We show that for arithmetic hyperbolic 3-manifolds that contain a totally geodesic surface, this spectrum determines the commensurability class. In addition, we show that any finite volume hyperbolic 3-manifold has many pairs of non-isometric finite covers with identical spectra. Forgetting multiplicities, we can also construct pairs where the volume ratio is unbounded

    Similar works

    Full text

    thumbnail-image

    Available Versions