research

A phason disordered two dimensional quantum antiferromagnet

Abstract

We examine a novel type of disorder in quantum antiferromagnets. Our model consists of localized spins with antiferromagnetic exchanges on a bipartite quasiperiodic structure, which is geometrically disordered in such a way that no frustration is introduced. In the limit of zero disorder, the structure is the perfect Penrose rhombus tiling. This tiling is progressively disordered by augmenting the number of random "phason flips" or local tile-reshuffling operations. The ground state remains N\'eel ordered, and we have studied its properties as a function of increasing disorder using linear spin wave theory and quantum Monte Carlo. We find that the ground state energy decreases, indicating enhanced quantum fluctuations with increasing disorder. The magnon spectrum is progressively smoothed, and the effective spin wave velocity of low energy magnons increases with disorder. For large disorder, the ground state energy as well as the average staggered magnetization tend towards limiting values characteristic of this type of randomized tilings.Comment: 5 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020