We examine a novel type of disorder in quantum antiferromagnets. Our model
consists of localized spins with antiferromagnetic exchanges on a bipartite
quasiperiodic structure, which is geometrically disordered in such a way that
no frustration is introduced. In the limit of zero disorder, the structure is
the perfect Penrose rhombus tiling. This tiling is progressively disordered by
augmenting the number of random "phason flips" or local tile-reshuffling
operations. The ground state remains N\'eel ordered, and we have studied its
properties as a function of increasing disorder using linear spin wave theory
and quantum Monte Carlo. We find that the ground state energy decreases,
indicating enhanced quantum fluctuations with increasing disorder. The magnon
spectrum is progressively smoothed, and the effective spin wave velocity of low
energy magnons increases with disorder. For large disorder, the ground state
energy as well as the average staggered magnetization tend towards limiting
values characteristic of this type of randomized tilings.Comment: 5 pages, 7 figure