Destruction, Amorphization and Reactivity of Nano-BN Under Ball Milling

Abstract

The processes of mechanical activation of a hexagonal boron nitride (h-BN) and its reactivity upon interaction with hydrogen and water were investigated using X-ray, TEM, Microdiffraction, Dynamic Light Scattering, FTIR-spectroscopy, adsorption (BET). Initial h-BN samples were monocrystalline plates 70–80 nm thick. Mechanical treatment of h-BN is accompanied by plate splitting and formation of crystallographically oriented “rods.” The rod thickness gradually diminishes to less than 5 nm. Specific surface area of the rods (400 m2/g), is found to be equal to the outer geometrical surface of rods. As nanocrystallites form “c” parameter of h-BN increases. When nanocrystallites are less than several nanometers in size, mechanical treatment results in BN amorphization; in this case specific surface of the system begins to decrease. Splitting of BN plates in the atmosphere of hydrogen is accompanied by the material hydrogenation and formation of BH and NH bonds. The amount of adsorbed hydrogen corresponds to monolayer filling. The amorphous part of activated BN interacts with water even at room temperature

    Similar works