research

Properties of a two orbital model for oxypnictide superconductors: Magnetic order, B_2g spin-singlet pairing channel, and its nodal structure

Abstract

A two orbital model for the new Fe-based superconductors is studied using the Lanczos method as well as pairing mean-field approximations. Our main goals are (i) to provide a comprehensive analysis of this model using numerical techniques with focus on half-filling and on the state with two more electrons than half-filling and (ii) to investigate the nodal structure of the mean-field superconducting state and compare the results with angle-resolved photoemission data. In particular, we provide evidence that at half-filling spin 'stripes', as observed experimentally, dominate over competing states. Depending on parameters, the state with two more electrons added to half filling is either triplet or singlet. Since experiments suggest spin singlet pairs, our focus is on this state. Under rotation, it transforms as the B_2g representation of the D_4h group. We also show that the s+/- pairing operator transforms as A_1g and becomes dominant only in an unphysical regime of the model where the undoped state is an insulator. For robust values of the effective electronic attraction producing the Cooper pairs, assumption compatible with recent angle-resolved photoemission (ARPES) results that suggesting small Cooper-pair size, the nodes of the two-orbital model are found to be located only at the electron pockets. Since recent ARPES efforts have searched for nodes at the hole pockets or only in a few directions at the electron pockets, our results for the nodal distribution may help to guide future experiments. More in general, the investigations reported here aim to establish several of the properties of the two orbital model. Only a detailed comparison with experiments will clarify how far this simple model present a valid description of the Fe pnictides

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020