Efforts to capture high amylose in rice

Abstract

Screening of wild and cultivated rice in IRRI germplasm collection revealed that majority have intermediate apparent amylose content. It appears that ancient farmers selected rice based on texture of the lower amylose varieties, considering that the majority of rice consumers today prefer intermediate to soft-textured rice. Furthermore, 30% seems to be the natural upper natural limit of amylose levels in wild-type rice. If this is the case, the rich biodiversity of rice has been subjected to the bottleneck of domestication to select for grains that have superior cooking and eating but not nutritional or satiating qualities considering that the majority of rice consumers today eat rice three times a day. On the other hand, the amylose content of available rice mutants with deficient SBEIIb or an over-expressed GBSSI also revealed amylose levels of around 35% which is significantly lower by comparison with other high amylose cereals, whose amylose content ranges from 70–90%. Hence, to produce the high amylose phenotype in rice, one might need to target different sets of enzymes or regulatory pathways. Since increasing the amylose levels in rice might mean a concomitant increase in its resistant starch content and in its levels of satiety, and a decrease in its glycemic response, developing high amylose rice by biotechnology is imperative. This type of rice will be important not only in addressing the growing obesity epidemic which now also affects the developing countries but also as a basis of novel degradable biopolymers and for further elucidating the mechanisms of starch synthesis in the cereal endosperm. In this paper, we also present the status of our research project which aims to silence the expression of SBEIIa, SBEIIb and SSIIa singly or in combination using microRNA and RNAi silencing technologies with the aim of increasing the amylose levels in rice beyond its natural limits

    Similar works