Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

Abstract

Laboratory experiments have shown that groundwater conditions in a Stripa granite repository will be as reducing as those in a basalt repository. The final oxidation potential (Eh) at 70/sup 0/C for Stripa groundwater deaerated and equilibrated with crystalline granite was -0.45V. In contrast, the oxidation potential at 60/sup 0/C for Grande Ronde groundwater equilibrated with basalt was -0.40V. The reducing groundwater conditions were found to slightly decrease the time-dependent release of soluble components from the waste glass. Spectrophotometric analysis of the equilibrated groundwaters indicated the presence of Fe/sup 2 +/ confirming that the Fe/sup 2 +//Fe/sup 3 +/ couple is controlling the oxidation potential. It was also shown that in the alkaline pH regime of these groundwaters the iron species are primarily associated with x-ray amorphous precipitates in the groundwater. Gamma radiolysis in the absence of waste glass and in the absence of oxygen further reduces the oxidation potential of both granitic and basaltic groundwaters. The effect is more pronounced in the basaltic groundwater. The mechanism for this decrease is under investigation but appears related to the reactive amorphous precipitate. The results of these tests suggest that H/sub 2/ may not escape from the repository system as postulated and that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe/sup 2 +/ species are present. 23 refs., 3 figs., 3 tabs

    Similar works