We analyze the formation and evolution statistics of single molecule
junctions bonded to gold electrodes using amine, methyl sulfide and dimethyl
phosphine link groups by measuring conductance as a function of junction
elongation. For each link, maximum elongation and formation probability
increase with molecular length, strongly suggesting that processes other than
just metal-molecule bond breakage play a key role in junction evolution under
stress. Density functional theory calculations of adiabatic trajectories show
sequences of atomic-scale changes in junction structure, including shifts in
attachment point, that account for the long conductance plateau lengths
observed.Comment: 10 pages, 4 figures, submitte