Comparison of Network Coding and Non-Network Coding Schemes for Multi-hop Wireless Networks

Abstract

Network coding has been shown to be useful for throughput and reliability in various network topologies, under a fixed-rate, point-to-multipoint wireless network model. We study the effect of introducing a wireless network model where link capacity depends on the network geometry and the signal to interference and noise ratio. In particular, we compare strategies with and without network coding on a multicast network with and without fading, and on single-user multiple path networks with fading. For the multicast network without fading, we find that the network geometry affects which scheme attains higher throughput. For the case with fading, we compare the throughput-outage probability curves achieved by network coding and repetition schemes. For the multiple path networks, we further consider the case where multiple simultaneous transmissions of identical information signals can be combined at a receiver. We find that the relative performance of the schemes we consider depends on the network geometry, the ratio of signal to noise power, whether multiple simultaneous transmissions can be combined, and the operating point on the throughput-outage probability curve

    Similar works