research

Invariance of generalized wordlength patterns

Abstract

The generalized wordlength pattern (GWLP) introduced by Xu and Wu (2001) for an arbitrary fractional factorial design allows one to extend the use of the minimum aberration criterion to such designs. Ai and Zhang (2004) defined the JJ-characteristics of a design and showed that they uniquely determine the design. While both the GWLP and the JJ-characteristics require indexing the levels of each factor by a cyclic group, we see that the definitions carry over with appropriate changes if instead one uses an arbitrary abelian group. This means that the original definitions rest on an arbitrary choice of group structure. We show that the GWLP of a design is independent of this choice, but that the JJ-characteristics are not. We briefly discuss some implications of these results.Comment: To appear in: Journal of Statistical Planning and Inferenc

    Similar works

    Full text

    thumbnail-image

    Available Versions