research

Effect of Initial Conditions on the Scalar Decay in Grid Turbulence at Low Rλ

Abstract

Decaying grid turbulence is considered at low Reynolds number (Rλ ~ 50) for different initial conditions. Three different grid geometries are used. Heat is injected via a mandoline at a distance of 1.5 M from the grid. The amount of heating is such that temperature may be treated as a passive scalar. A small contraction (1.36:1) is added at a distance of 11M downstream of the grid. The power-law exponents for the scalar variance are compared with those for the turbulent kinetic energy. These exponents depend on the grid geometry. For the isotropic dissipation rate 〈χ〉iso, the power-law exponent agrees with that inferred from the temperature variance transport equation. Restricting the range of validity of the decay law affects the magnitudes of the origin and decay exponent. Secondorder temperature structure functions collapse when the normalization is based on the local temperature variance and the Corrsin microscale but the asymptotic form of this collapse depends on the initial conditions

    Similar works