Nonlinear Control of Autonomous Flying Cars with Wings and Distributed Electric Propulsion

Abstract

Hybrid vertical take-off and landing vehicles (VTOL) with lift production from wings and distributed propulsive system present unique control challenges. Existing methods tend to stitch and switch different controllers specially designed for fixed-wing aircraft or multicopters. In this paper, we present a unified framework for designing controllers for such winged VTOL vehicles that are commonly found in recent flying car models. The proposed method is broken down into nonlinear control of both position and attitude with forces and moments as inputs, and real-time control allocation that integrates distributed propulsive actuation with conventional control surface deflection. We also present a strategy that avoids saturation of distributed propulsion control inputs. The effectiveness of the proposed framework is demonstrated through simulation and closed-loop flight experiment with our winged VTOL flying car prototype

    Similar works