Background: Predicting preoperative in-hospital mortality using readily-available electronic medical record (EMR) data can aid clinicians in accurately and rapidly determining surgical risk. While previous work has shown that the American Society of Anesthesiologists (ASA) Physical Status Classification is a useful, though subjective, feature for predicting surgical outcomes, obtaining this classification requires a clinician to review the patient's medical records. Our goal here is to create an improved risk score using electronic medical records and demonstrate its utility in predicting in-hospital mortality without requiring clinician-derived ASA scores. Methods: Data from 49,513 surgical patients were used to train logistic regression, random forest, and gradient boosted tree classifiers for predicting in-hospital mortality. The features used are readily available before surgery from EMR databases. A gradient boosted tree regression model was trained to impute the ASA Physical Status Classification, and this new, imputed score was included as an additional feature to preoperatively predict in-hospital post-surgical mortality. The preoperative risk prediction was then used as an input feature to a deep neural network (DNN), along with intraoperative features, to predict postoperative in-hospital mortality risk. Performance was measured using the area under the receiver operating characteristic (ROC) curve (AUC). Results: We found that the random forest classifier (AUC 0.921, 95%CI 0.908-0.934) outperforms logistic regression (AUC 0.871, 95%CI 0.841-0.900) and gradient boosted trees (AUC 0.897, 95%CI 0.881-0.912) in predicting in-hospital post-surgical mortality. Using logistic regression, the ASA Physical Status Classification score alone had an AUC of 0.865 (95%CI 0.848-0.882). Adding preoperative features to the ASA Physical Status Classification improved the random forest AUC to 0.929 (95%CI 0.915-0.943). Using only automatically obtained preoperative features with no clinician intervention, we found that the random forest model achieved an AUC of 0.921 (95%CI 0.908-0.934). Integrating the preoperative risk prediction into the DNN for postoperative risk prediction results in an AUC of 0.924 (95%CI 0.905-0.941), and with both a preoperative and postoperative risk score for each patient, we were able to show that the mortality risk changes over time. Conclusions: Features easily extracted from EMR data can be used to preoperatively predict the risk of in-hospital post-surgical mortality in a fully automated fashion, with accuracy comparable to models trained on features that require clinical expertise. This preoperative risk score can then be compared to the postoperative risk score to show that the risk changes, and therefore should be monitored longitudinally over time