Decomposing spatially dependent and cell type specific contributions to cellular heterogeneity

Abstract

Both the intrinsic regulatory network and spatial environment are contributors of cellular identity and result in cell state variations. However, their individual contributions remain poorly understood. Here we present a systematic approach to integrate both sequencing- and imaging-based single-cell transcriptomic profiles, thereby combining whole-transcriptomic and spatial information from these assays. We applied this approach to dissect the cell-type and spatial domain associated heterogeneity within the mouse visual cortex region. Our analysis identified distinct spatially associated signatures within glutamatergic and astrocyte cell compartments, indicating strong interactions between cells and their surrounding environment. Using these signatures as a guide to analyze single cell RNAseq data, we identified previously unknown, but spatially associated subpopulations. As such, our integrated approach provides a powerful tool for dissecting the roles of intrinsic regulatory networks and spatial environment in the maintenance of cellular states

    Similar works