Interior Schwarzschild Solutions and Interpretation of Source Terms

Abstract

The solutions of the Einstein field equations, previously used in deriving the self-energy of a point charge, are shown to be nonsingular in a canonical frame, except at the position of the particle. A distribution of "dust" of finite extension is examined as the model whose limit is the point particle. The standard "proper rest-mass density" is related to the bare rest-mass density. The lack of singularity of the initial metric The solutions of the Einstein field equations, previously used in deriving the self-energy of a point charge, are shown to be nonsingular in a canonical frame, except at the position of the particle. A distribution of "dust" of finite extension is examined as the model whose limit is the point particle. The standard "proper rest-mass density" is related to the bare rest-mass density. The lack of singularity of the initial metric g_(µν) is in contrast to the Schwarzschild type singularity of standard coordinate systems. Our solutions for the extended source are nonstatic in general, corresponding to the fact that a charged dust is not generally in equilibrium. However, the solutions become static in the point limit for all values of the bare-source parameters. Similarly, the self-stresses vanish for the point particle. Thus, a classical point electron is stable, the gravitational interaction cancelling the electrostatic self-force, without the need for any extraneous "cohesive" forces

    Similar works