Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol

Abstract

Mass absorption coefficient spectra were measured between λ = 500 nm and 840 nm for nine forms of highly-absorbing carbonaceous aerosol: five samples generated from gas-, liquid- and solid-fueled flames; spark-discharge fullerene soot; graphene and reduced graphene oxide (rGO) crumpled nanosheets; and fullerene (C_(60)) assemblies. Aerosol absorption spectra were measured for size- and mass-selected particles and found to be dependent on fuel type and formative conditions. Flame-generated particles had morphologies consistent with freshly emitted black carbon (BC) with mass absorption coefficients (MAC) ranging between 3.8 m^2 g^(−1) and 8.6 m^2 g^(−1) at λ = 550 nm. Absorption Ångström exponents (AAE) – i.e. MAC spectral dependence – ranged between 1.0 and 1.3 for flame-generated particles and up to 7.5 for C_(60). The dependence of MAC and AAE on mobility diameter and particle morphology was also investigated. Lastly, the current data were compared to all previously published MAC measurements of highly-absorbing carbonaceous aerosol

    Similar works