Alterations in membrane surfaces induced by attachment of carbohydrates

Abstract

We have examined the behavior of the dry phospholipid dipalmitoylphosphatidylcholine (DPPC) in the presence of several carbohydrate derivatives. These carbohydrate derivatives possess a hydrophobic portion which is incorporated directly into the DPPC membrane and a hydrophilic portion which places the carbohydrate structure at the membrane interface with the surrounding matrix. In the presence of these derivatives, the physical properties of the membrane are altered. These alterations are evident in changes observed in the phosphate and carbonyl vibrational modes of the phospholipid portion of the membrane. In addition, the phase transition behavior of the lipid is significantly altered as evidenced by a reduction in the gel to liquid-crystalline phase transition temperature. These results are consistent with those Previously reported for free carbohydrates interacting with membranes in which a water replacement hypothesis has been used to explain the behavior. The attachment of carbohydrates to the membrane enhances these effects by localizing the agent responsible for these alterations at the membrane interface

    Similar works

    Full text

    thumbnail-image

    Available Versions