Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS_2 and MoSe_2

Abstract

Single crystals of n-type MoS_2 and n-MoSe_2 showed higher electrocatalytic activity for the evolution of H_2(g) in alkaline solutions than in acidic solutions. The overpotentials required to drive hydrogen evolution at −10 mA cm^(–2) of current density for MoS^2 samples were −0.76 ± 0.13 and −1.03 ± 0.21 V when in contact with 1.0 M NaOH(aq) and 1.0 M H_2SO_4(aq), respectively. For MoSe_2 samples, the overpotentials at −10 mA cm^(–2) were −0.652 ± 0.050 and −0.709 ± 0.073 V in contact with 1.0 M KOH(aq) and 1.0 M H_2SO_4(aq), respectively. Single crystals from two additional sources were also tested, and the absolute values of the measured overpotentials were consistently less (by 460 ± 250 mV) in alkaline solutions than in acidic solutions. When electrochemical etching was used to create edge sites on the single crystals, the kinetics improved in acid but changed little in alkaline media. The overpotentials measured for polycrystalline thin films (PTFs) and amorphous forms of MoS_2 showed less sensitivity to pH and edge density than was observed for single crystals and showed enhanced kinetics in acid when compared to alkaline solutions. These results suggest that the active sites for hydrogen evolution on MoS_2 and MoSe_2 are different in alkaline and acidic media. Thus, while edges are known to serve as active sites in acidic media, in alkaline media it is more likely that terraces function in this role

    Similar works