Abstract: The three lakes investigated gain water- from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net
seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydaulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake- and ground-water level is same on all sides of the lake with regard to each aquifer and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer