Stability of Systems with Stochastic Delays and Applications to Genetic Regulatory Networks

Abstract

The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability charts that are obtained via semidiscretization. The theoretical methods are applied to simple gene regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability of steady protein production

    Similar works