Three-Player Entangled XOR Games are NP-Hard to Approximate

Abstract

We show that for any Є > 0 the problem of finding a factor (2 - Є) approximation to the entangled value of a three-player XOR game is NP-hard. Equivalently, the problem of approximating the largest possible quantum violation of a tripartite Bell correlation inequality to within any multiplicative constant is NP-hard. These results are the first constant-factor hardness of approximation results for entangled games or quantum violations of Bell inequalities shown under the sole assumption that P≠NP. They can be thought of as an extension of Håstad's optimal hardness of approximation results for MAX-E3-LIN2 [J. ACM, 48 (2001), pp. 798--859] to the entangled-player setting. The key technical component of our work is a soundness analysis of a plane-vs-point low-degree test against entangled players. This extends and simplifies the analysis of the multilinearity test by Ito and Vidick [Proceedings of the 53rd FOCS, IEEE, Piscataway, NJ, 2012, pp. 243-252]. Our results demonstrate the possibility of efficient reductions between entangled-player games and our techniques may lead to further hardness of approximation results

    Similar works