Photoacoustic microscopy of blood pulse wave

Abstract

Blood pulse wave velocity (PWV) is an important physiological parameter that characterizes vascular stiffness. In this letter, we present electrocardiogram-synchronized, photoacoustic microscopy for noninvasive quantification of the PWV in the peripheral vessels of living mice. Interestingly, blood pulse wave-induced fluctuations in blood flow speed were clearly observed in arteries and arterioles, but not in veins or venules. Simultaneously recorded electrocardiograms served as references to measure the travel time of the pulse wave between two cross sections of a chosen vessel and vessel segmentation analysis enabled accurate quantification of the travel distance. PWVs were quantified in ten vessel segments from two mice. Statistical analysis shows a linear correlation between the PWV and the vessel diameter which agrees with known physiology

    Similar works