Three-dimensional arbitrary trajectory scanning photoacoustic microscopy

Abstract

We have enhanced photoacoustic microscopy with three-dimensional arbitrary trajectory (3-DAT) scanning, which can rapidly image selected vessels over a large field of view (FOV) and maintain a high signal-to-noise ratio (SNR) despite the depth variation of the vessels. We showed that hemoglobin oxygen saturation (sO_2) and blood flow can be measured simultaneously in a mouse ear in vivo at a frame rate 67 times greater than that of a traditional two-dimensional raster scan. We also observed sO_2 dynamics in response to switching from systemic hypoxia to hyperoxia

    Similar works